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Abstract—The goal of many computer graphics applications
is to generate realistic visuals. However, 3D scenes can also be
effectively depicted by using non-photorealistic techniques. This
work presents a method to render 3D geometry as silhouetted
wireframe using lines with the style of a vector monitor in real-
time. The effectiveness is then analyzed and a possible perceptual
study is outlined.

I. INTRODUCTION

At the beginning of 3D computer graphics, scenes were
rendered using nothing more than a couple lines. In many
cases, these were displayed using vector monitors, an old
display technology where graphics are rendered via an electron
beam directly drawing lines as opposed to a grid of pixels as on
raster monitors. These monitors were notably used in arcade
games up until the mid-1980s including Tempest1, Star Wars2,
and Battlezone3 all of which feature 3D graphics.

In this paper the display capabilities of vector monitors are
emulated to create 3D scenes in real-time. However, as the
geometry of models is much more complex than was used in
the days of vector monitors, a method of determining which
lines to draw is needed. An algorithm is used to detect edges
that form a silhouette or crease on a model from a movable
viewpoint.

The paper is organized in the following sections. Section II
examines related work. Section III presents the implementation
of the algorithm. Section IV evaluates the results. Finally,
Section V concludes with a summary of this and future work.

II. BACKGROUND

The process of extracting feature lines from a model is a
popular topic in non-photorealistic rendering (NPR), a branch
of computer graphics that focuses on using a variety of artistic
styles to generate imagery. There are two main approaches,
image space and object space[1]. Image space methods post-
process rendered scenes. By detecting edges after rendering
the models, geometric details are lost making drawing stylized
lines harder. Therefore, this paper focuses on an object space
method which directly uses the 3D geometry. Furthermore,
this method can take advantage of a geometry shader and its
adjacency information to enable real-time performance[2].

This work focuses on detecting two types of feature lines,
silhouette (or occluding contour) lines and crease lines. As

1Video Demo: https://youtu.be/AMto2HJJSSA?t=44s
2Video Demo: https://youtu.be/CbqFawQvdGE
3Video Demo: https://youtu.be/zdfKy4c7yuc?t=8m15s
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Silhouette if na.z > 0 ∧ nb.z ≤ 0

Crease if na · nb > cos θ

Fig. 1. The edge AB connects faces A and B with normals na and nb. The
mathematical definitions for silhouette and crease edges are also given.

pictured in Figure 1, Silhouette lines are edges where a
front facing triangle (A) meets a back facing triangle (B).
Creased edges are where the angle between the normals of
two front facing triangles (na and nb) is greater than some
threshold value (cos θ)[3]. Al-Rousan et al.[4] provides a
detailed overview of these and several other types of lines. An
article on Silhouette Extraction[5] has provided a rough outline
of some of the steps used for the implementation presented in
this paper. Additionally, it references a visibility algorithm for
occluding lines from another paper[6].

The inspiration for this project comes from a PlayStation
game called Vib-Ribbon[7]. Although Vib-Ribbon only ap-
proximates the silhouette effect using flat geometry instead of
a specially rendered model. A more modern example released
during the development of this project is Muffled Warfare[8],
which perfectly demonstrates the intended effect.

III. IMPLEMENTATION

Following is a description of the implementation of the
application. All the program code was written in C++ and the
shader code was written in GLSL. The development process
behind the implementation is recorded on the project blog[9].

A. Libraries

I was able to get the application working with the help
of several libraries. Additionally, since I have not had much
previous experience with these libraries, I used a couple
tutorials that will be linked in the footnotes.

https://youtu.be/AMto2HJJSSA?t=44s
https://youtu.be/CbqFawQvdGE
https://youtu.be/zdfKy4c7yuc?t=8m15s


SDL 2.04 is used to handle window creation and input.
For rendering graphics OpenGL56 is loaded via GLAD. GLM
handles vector and matrix operations. Finally, Assimp is used
to load models.

B. Generating Adjacency Data
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Fig. 2. GL TRIANGLES ADJACENCY format, numbers indicate index.

SDL, OpenGL, shader programs, and framebuffer are all
initialized in a standard way. However, after importing the
model with Assimp, there is no adjacency data that is required
later by the geometry shader. As seen from Figure 2, for every
edge of every triangle an adjacent vertex needs to be included.

At first, a naive algorithm was written that loops over every
face to find the adjacent vertex for every edge. This has a time
complexity of O(|V |2) where |V | is the number of vertices.
For a simple model of 511 vertices running on my modest
laptop, this takes about 4 seconds. This is slow especially
considering that the test model is small, and the algorithm
does not scale well.

Algorithm 1 Generate Triangle Adjacency Data
1: function GEN TRI ADJ(inIndices)
2: halfEdgeHashTable← empty hash table
3: for face← 0 to (numFaces− 1) do
4: for edge← 0 to 2 do
5: v0 ← inIndices[face][edge]
6: v1 ← inIndices[face][(edge + 1)%3]
7: v2 ← inIndices[face][(edge + 2)%3]
8: halfEdgeHashTable[(v0, v1)]← v2

9: for face← 0 to (numFaces− 1) do
10: for edge← 0 to 2 do
11: v0 ← inIndices[face][edge]
12: v1 ← inIndices[face][(edge + 1)%3]
13: vadj ← halfEdgeHashTable[(v1, v0)]
14: outIndices[face][2 ∗ edge]← v0
15: outIndices[face][2 ∗ edge + 1]← vadj

return outIndices

After some research, I found a rather simple method7 that
generates the adjacency data in O(|V |). It does this by first
creating a hash table that maps half-edges to the third vertex of
the triangle. Then, it loops through each half-edge and inputs

4http://lazyfoo.net/tutorials/SDL/index.php
5http://www.opengl-tutorial.org/
6https://learnopengl.com/
7https://gamedev.stackexchange.com/questions/62097/

building-triangle-adjacency-data

the opposite edge into the hash table to find the adjacent vertex.
The full procedure is given in pseudocode in Algorithm 1.
Generating data for the same model with this method took
100 milliseconds on my laptop, which is 40 times faster.
Additionally, the algorithm will scale better for more complex
scenes.

C. Render Loop

Now that the initialization code has been described, fol-
lowing is an overview of the render loop. First, the view
matrix is recalculated based on user input of the position
and rotation of the camera. Then, the model is rendered to
a depth texture. After a vertex shader transforms the vertices,
a geometry shader detects and emits the vector lines. Next,
a fragment shader draws these lines to a framebuffer if they
pass a custom depth test. The screen is then blurred with a
two-pass Gaussian blur. This blurred framebuffer and the raw
vector lines framebuffer are combined and drawn to the screen
to perform a bloom effect.

1) Render to Depth Texture: To render the stokes in the
vector lines fragment shader, a complete depth buffer is
needed. Therefore, an early Z pass is performed. The depth
texture can easily be created by turning off the color mask and
binding a framebuffer with only a depth attachment. Then, the
models are drawn using a vertex shader that only multiplies
by the Model-View-Projection matrix and no fragment shader.

2) Setup Vector Lines Rendering Pass: After rendering
the depth texture, the color mask is re-enabled, the standard
depth test is disabled, the depth framebuffer is unbound, and
the depth texture is bound to texture 0. Next, the models
are drawn again, this time using the vector lines shader.
The vertex shader simply transforms the vertices as well as
passing through the object space coordinates for perspective
independent calculations.

3) Vector Lines Geometry Shader: In the geometry shader,
the given triangle is first verified to be front facing. Then each
of the three edges are checked to determine if they form a
silhouette or crease. If they do, the line is emitted as a triangle
strip of four points.

A silhouette line is detected if the adjacent triangle is back
facing. The direction of the face is determined by examining
the sign of the Z component of the face normal. Note that
the normal is computed from the clip space vertices after
the perspective transformation. Contrarily, crease edges are
determined by taking the dot product of the object space
normals. This ensures that crease edges are view independent.
This value, which is the cosine of the angle between normals,
is then compared to some threshold value. The current imple-
mentation uses a threshold angle of 60◦.

After an edge has been detected, it must be clipped to pre-
vent a negative homogeneous component from affecting later
computations. Clipping is performed via the Cohen-Sutherland
algorithm on the six standard homogeneous clipping planes.

Finally, the output variables for the fragment shader are
calculated. The first is the position of the four corners of the
rendered rectangle. The line is extruded by a constant pixel

http://lazyfoo.net/tutorials/SDL/index.php
http://www.opengl-tutorial.org/
https://learnopengl.com/
https://gamedev.stackexchange.com/questions/62097/building-triangle-adjacency-data
https://gamedev.stackexchange.com/questions/62097/building-triangle-adjacency-data


Fig. 3. Example of gaps at vertices. Lines are rendered with a flat color for
clarity.

distance perpendicular to the spine in both directions (four
pixels in current implementation). The lines are also extended
by this distance to ensure that no gaps appear when two lines
meet at an angle as shown in Figure 3. Finally, a Z-bias is
added to reduce Z-fighting as explained at greater detail in the
next section. All these offsets are added to the original points
while taking care to preserve the homogeneous component to
not disrupt rasterization.

The texture coordinates, length of the line, and spine po-
sition are also computed for use in the fragment shader. The
texture coordinates are qualified as noperspective to be
interpolated correctly in screen space.

4) Vector Lines Fragment Shader: Next, the fragment
shader tests line depth using a custom depth test and calculates
the pixel brightness to emulate the look of a vector monitor.

Fig. 4. Example of Z-fighting causing broken lines.

A depth test is necessary to properly occlude lines that are
hidden behind the model. A standard depth test would not
work as the extruded part of the line might extend into the
model, failing the depth test even though it should be visible.
This is very common in the case of valley creases and for the
model side of silhouette edges. One solution is to perform the
depth test along the spine of the edge. This method is called

the spine test[6]. To perform this test, the depth buffer needs
to be fully filled. This is why a depth texture was rendered in
an earlier step. Now, the Z component of the fragment simply
needs to be compared to the position of the spine point in the
depth texture. However, due to the precision of floating point
values some Z-fighting still occurs even after adding a Z-bias
in the geometry shader. The result of this is shown in Figure
4. To reduce Z-fighting even more, the eight adjacent pixels
are also sampled to achieve better accuracy. If the depth test is
failed, the fragment is discarded, otherwise the pixel brightness
is calculated.

The pixel brightness is set as inversely proportional to the
distance from the spine. There is an edge case if a fragment
is in an end cap, the distance to the endpoint is used instead
to give rounded ends. This can be seen at the end of some of
the broken lines in Figure 4. The line color is then multiplied
by the brightness to determine the output color sent to the
framebuffer. The lines are blended using GL_MAX as the blend
equation. This prevents overlapping endpoints from being too
bright.

5) Gaussian Blur and Bloom: Finally, a bloom effect is
achieved by blurring the output from the previous step with
a Gaussian blur and adding this back to the raw vector lines
texture.

The blur is performed as a two-pass Gaussian blur to
improve efficiency. If a 9 × 9 kernel were used in a one-
pass blur it would take 81 samples. Instead, a 1D blur is
applied in the horizontal direction and then in the vertical
direction requiring 9+9 = 18 samples per iteration. At first, to
increase the blur strength this process was repeated four times.
However, this was later found out to be nearly equivalent to
a 17-tap blur applied once. Then, even further improvement
came from the algorithm presented in an article[10]. This
method takes advantage of the GPU’s texture filtering by
sampling between texels to calculate two weights at a time.
Now, only a 9-tap filter is needed to achieve the same results.

Fig. 5. Comparison of an 8 pixel half-width rendering without bloom (left)
to a 4 pixel half-width rendering with bloom (right).

Lastly, bloom is applied by adding the original vector lines
output back to the blurred version. There is also an option
to scale the blurred component by a fixed factor. However, a



factor of 1 achieved the best results. A comparison with and
without bloom is given in Figure 5.

IV. ANALYSIS

Fig. 6. Final implementation rendering a test scene of a dummy in a sci-fi
hallway.

My goal for this project was to write an application that
could render arbitrary models to look like they are being
displayed on a vector monitor in real-time. As evidenced
by Figure 6, this goal has been achieved to my satisfaction.
However, there are a couple other, less subjective ways to
measure the success of this project.

The final application meets many of the objectives laid
out in the project specification. The outer edges and the
distinguishing feature lines are drawn by detecting silhouette
and crease edges. Lines that fall behind other parts of the scene
are properly occluded. Also, the edges do in fact emulate lines
drawn by a vector display with their inversely proportional
brightness and bloom effect.

Another target of this project was to have the application
function in real-time. This can be measured by testing frame
rate. Using my relatively lower powered laptop with integrated
graphics, the algorithm runs at 241.0 frames per second to
render two test model of 2956 (dummy) and 6595 (hallway)
vertices in Figure 6. This equates to 4.15 milliseconds per
frame where 1.99 milliseconds come from the bloom step
which is constant for a given screen resolution. Another timing
test shows that one, two, and three dummies take 3.154,
3.294, and 3.457 milliseconds per frame (= 317.1, 303.5,
and 289.2 fps) respectively to render. This suggests that the
method scales linearly with scene complexity. Even with a
more complex scene comprised of more lines, the algorithm
still should be able to run smoothly in real-time especially
with better hardware.

Next, let us look at any flaws or graphical artifacts present
in the current implementation. While Z-biasing and supersam-
pling the depth buffer have greatly reduced Z-fighting, it still

occasionally occurs. Another problem is the quality of the
vector line representation is dependent on the model used.
If the model has very smooth curves, crease edges will not
be present leading to a shapeless blob of silhouette edges.
Additionally, some objects tend to be more recognizable using
few lines while others are too complex to be represented well.

A. Perceptual Study

Another approach towards assessing this project is using a
perceptual study. While most perceptual studies focus on the
realistic aspect of computer graphics, some studies have been
conducted in the field of NPR. A survey of user evaluation
methods of NPR[11] has categorized several techniques ac-
cording to their targeted application. These include psycholog-
ical, architectural, medical, learning, and natural phenomenon
applications, as well as, perception of space, and texture-
based depictions. The specific studies range from evaluating
the emotional response of NPR[12] to the effectiveness of NPR
techniques in scientific illustrations[13].

As the goal of this project was to create convincing repre-
sentations for 3D geometry, a perceptual study should eval-
uate the effectiveness of the vector line representations. One
possible method would be to test participants on their ability
to identify objects while varying the rendering algorithm. This
would provide incite as to how recognizable vector line images
are.

1) Related Studies: The study introduced above pertains
to visualization comprehension of NPR imagery. A com-
prehensive study by Kim et al.[14], tested participants in
the effectiveness of texture patterns at conveying 3D shape
information. The results suggest that accuracy was affected
by the principal direction texture pattern used. Velez et al.[15]
investigates the difficulties of understanding visualizations by
testing the differences in spatial ability. It found that high
spatial ability correlates with accuracy on their computer-based
3D visualization test, but not with response time.

2) Design: First, the participants will be presented a scene
filled with several object for a short time. Then, they will be
questioned on what objects they saw. Both the scene and each
individual object will be scored by accuracy. The rendering
method of the scene will be changed to test the effectiveness
of each method. Possible methods include wireframe, solid
silhouette, cel shading, realistic shading, and the vector lines
representation presented in this paper. No texturing or coloring
will be applied to control their effects. Instead this study will
be focused on the effects of shading and line representations.
The renderer and stimuli will be rearranged according to a
latin square design.

3) Stimuli: This study is interested in the effects of the
rendering methods on two axes of stimuli. First, the models
used should cover a wide array of distinguishability. This
can range from easily recognizable things like a bike to hard
objects like a golf ball. Second, the scene should be composed
of a variable number of objects of the same distinguishability.
Combined, the results will tell us how the effectiveness of



a given renderer at representing complex objects and large
scenes.

4) Expectations: The vector line representations tend to
be more simplistic and cleaner than other methods which
may improve recognition speeds. However, certain objects are
better suited to be distinguished by the algorithm than other
objects. I believe it will perform better on larger scenes but
worse on complex objects.

V. CONCLUSION

A lot of research has been conducted in the field of NPR
focusing on rendering techniques for stylized lines. The work
presented here has used these techniques and expounded upon
them to emulate the look of a vector monitor. The final
application generates adjacency information, computes a depth
texture, runs a shader program to detect and render the vector-
styled lines, and finally applies a bloom effect. Then, this
implementation was analyzed on its objectives and flaws.
Finally, a possible perceptual study was suggested.

Fig. 7. Improvable cases of a faraway model (left) and intersecting geometry
(right).

Despite meeting its targets, this work still has several
possible extensions to create a better implementation. As the
lines are constant width, a model that is far away will seem
cramped (Figure 7, left). The model could be displayed more
sparsely by selecting edges more restrictively.

The test models used for this paper were conducive towards
the application of the algorithm. However, other models will
not have as many distinguishing lines. This could be solved by
implementing some of the other lines described by Al-Rousan
et al.[4]. Edges can also be drawn at lines of intersecting
geometry as exhibited where the hand meets the wrist in
Figure 7. The solution unfortunately is outside the scope of
this project as it would require advanced intersection tests to
efficiently calculate the intersection paths of the meshes.

Since the edges are taken directly from the underlying
models, curved lines appear jagged. A method for smoothing
these paths like presented in Wang et al.[16] could be applied.

For the most part the overdraw method hides the gaps
between edges. But, at T-intersections of lines the overdrawn
part will stick out as seen in the top of the wrist in Figure 7.

Finally, in the current implementation all the lines are pure
white. Instead the scene could be made more interesting by

varying color and brightness. Even basic shading would be
possible.
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